If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+100x-6400=0
a = 1; b = 100; c = -6400;
Δ = b2-4ac
Δ = 1002-4·1·(-6400)
Δ = 35600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{35600}=\sqrt{400*89}=\sqrt{400}*\sqrt{89}=20\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-20\sqrt{89}}{2*1}=\frac{-100-20\sqrt{89}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+20\sqrt{89}}{2*1}=\frac{-100+20\sqrt{89}}{2} $
| 6k^2-k=2 | | 2x6=21- | | 3-4x+12x=50 | | (5c-3)(6c-1)=0 | | 5+8=2+b | | 5(s+7)=2s+50 | | 4(p-5)=3p+8 | | y^-2/5=28 | | X+7=6x-28 | | 8x+64=9x-9 | | 4t-5-5t=-9-t+4 | | -5(-v-2)=35 | | (x-100)/x=0.3 | | 9^(y+8)=12 | | 6c=6c+9 | | 1^x=26 | | -15+3y=3+27y | | 5x^2-10=125^x | | 12x-103=3x+41+8x-54 | | 6(k+4)=78 | | 6-(6x)=-108 | | 5(t-9)+12.t=20 | | 48+y+37=180 | | w2-3.w=4 | | -(0.4x+32)=0.8x-32 | | 0.4x+32=0.8x-32 | | V=55980-55980x0.14x12 | | 7y-10=y-7y | | 3/3/4*x*x*x*x+x*x*x-3x^2-2=0 | | 3/4*x*x*x*x+x*x*x-3x^2-2=0 | | 5(w-1)=3w-1 | | -6=3(v+7)-6v |